On proteins, grids, correlations, and docking.

نویسندگان

  • Miriam Eisenstein
  • Ephraim Katchalski-Katzir
چکیده

The activity of a living cell can be portrayed as a network of interactions involving proteins and nucleic acids that transfer biological information. Intervention in cellular processes requires thorough understanding of the interactions between the molecules, which can be provided by docking techniques. Docking methods attempt to predict the structures of complexes given the structures of the component molecules. We focus hereby on protein-protein docking procedures that employ grid representations of the molecules, and use correlation for searching the solution space and evaluating putative complexes. Geometric surface complementarity is the dominant descriptor in docking. Inclusion of electrostatics often improves the results of geometric docking for soluble proteins, whereas hydrophobic complementarity is more important in construction of oligomers. Using binding-site information in the scan or as a filter helps to identify and up-rank nearly correct solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions

MOTIVATION Predicting how proteins interact at the molecular level is a computationally intensive task. Many protein docking algorithms begin by using fast Fourier transform (FFT) correlation techniques to find putative rigid body docking orientations. Most such approaches use 3D Cartesian grids and are therefore limited to computing three dimensional (3D) translational correlations. However, t...

متن کامل

Molecular Docking of Curcumin With Breast Cancer Cell Line Proteins

Background: Breast cancer is known as the most widely recognized dangerous tumors; therefore, the most common reason for mortality among all instances of harmful neoplastic illness in females. This is because the lack of specific signs and symptoms at the early stage and at the aggressive nature. Currently, breast cancer treatment such as chemotherapy, surgery and radiotherapy has not been effe...

متن کامل

Protein docking using spherical polar Fourier correlations.

We present a new computational method of docking pairs of proteins by using spherical polar Fourier correlations to accelerate the search for candidate low-energy conformations. Interaction energies are estimated using a hydrophobic excluded volume model derived from the notion of "overlapping surface skins," augmented by a rigorous but "soft" model of electrostatic complementarity. This approa...

متن کامل

Calculation of Force Field Grids for Molecular Docking Using Graphics Processing Unit

The vast majority of problems faced by bioinformatics are very complex and time consuming. They require the use of modern high-performance computational systems and the development of algorithms for such system. Heterogeneous computing systems which include graphics processing unit (GPU) occupy a separate niche. Such systems allow to accelerate solving of some task significantly. The task perfo...

متن کامل

Identification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation

There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comptes rendus biologies

دوره 327 5  شماره 

صفحات  -

تاریخ انتشار 2004